skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dey, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The layer stacking order in two-dimensional heterostructures, like graphene, affects their physical properties and potential applications. Trilayer graphene, specifically ABC-trilayer graphene, has captured significant interest due to its potential for correlated electronic states. However, achieving a stable ABC arrangement is challenging due to its lower thermodynamic stability compared to the more stable ABA stacking. Despite recent advancements in obtaining ABC graphene through external perturbations, such as strain, the stacking transition mechanism remains insufficiently explored. In this study, we unveil a universal mechanism to achieve ABC stacking, applicable for understanding ABA to ABC stacking changes induced by any mechanical perturbations. Our approach is based on a novel strain engineering technique that induces interlayer slippage and results in the formation of stable ABC domains. We investigate the underlying interfacial mechanisms of this stacking change through computational simulations and experiments. Our findings demonstrate a highly anisotropic and significant transformation of ABA stacking to large and stable ABC domains facilitated by interlayer slippage. Through atomistic simulations and local energy analysis, we systematically demonstrate the mechanism for this stacking transition, that is dependent on specific loading orientation. Understanding such a mechanism allows this material system to be engineered by design compatible with industrial techniques on a device-by-device level. We conduct Raman studies to validate and characterize the formed ABC stacking, highlighting its distinct features compared to the ABA region. Our results contribute to a clearer understanding of the stacking change mechanism and provide a robust and controllable method for achieving stable ABC domains, facilitating their use in developing advanced optoelectronic devices. 
    more » « less
  2. We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer. 
    more » « less
  3. We report deterministic control over a moiré superlattice interference pattern in twisted bilayer graphene by implementing designable device-level heterostrain with process-induced strain engineering, a widely used technique in industrial silicon nanofabrication processes. By depositing stressed thin films onto our twisted bilayer graphene samples, heterostrain magnitude and strain directionality can be controlled by stressor film force (film stress × film thickness) and patterned stressor geometry, respectively. We examine strain and moiré interference with Raman spectroscopy through in-plane and moiré-activated phonon mode shifts. Results support systematic C 3 rotational symmetry breaking and tunable periodicity in moiré superlattices under the application of uniaxial or biaxial heterostrain. Experimental results are validated by molecular statics simulations and density functional theory based first principles calculations. This provides a method not only to tune moiré interference without additional twisting but also to allow for a systematic pathway to explore different van der Waals based moiré superlattice symmetries by deterministic design. 
    more » « less
  4. null (Ed.)
    Abstract Transition metal dichalcogenides (TMDs) offer superior properties over conventional materials in many areas such as in electronic devices. In recent years, TMDs have been shown to display a phase switching mechanism under the application of external mechanical strain, making them exciting candidates for phase change transistors. Molybdenum ditelluride (MoTe2) is one such material that has been engineered as a strain-based phase change transistor. In this work, we explore various aspects of the mechanical properties of this material by a suite of computational and experimental approaches. First, we present parameterization of an interatomic potential for modeling monolayer as well as multilayered MoTe2 films. For generating the empirical potential parameter set, we fit results from density functional theory calculations using a random search algorithm known as particle swarm optimization. The potential closely predicts structural properties, elastic constants, and vibrational frequencies of MoTe2 indicating a reliable fit. Our simulated mechanical response matches earlier larger scale experimental nanoindentation results with excellent prediction of fracture points. Simulation of uniaxial tensile deformation by molecular dynamics shows the complete non-linear stress-strain response up to failure. Mechanical behavior, including failure properties, exhibits directional anisotropy due to the variation of bond alignments with crystal orientation. Furthermore, we show the deterioration of mechanical properties with increasing temperature. Finally, we present computational and experimental evidence of an extended c-axis strain transfer length in MoTe2 compared to TMDs with smaller chalcogen atoms. 
    more » « less